Quantcast
Channel: Programmers Heaven Forums RSS Feed
Viewing all articles
Browse latest Browse all 2703

[ pygame ] polygons ( vr )

$
0
0
this is a try at a VR world
whitout opengl
but whit OOP

error :
- i get only a black screen

sugestions or improvement are welkom to

basic3d.py
import pygame
from pygame.locals import *
import sys
from cVector3 import *
import math
from cColor import *

pygame.init()
winx , winy = 640 , 480 
screen = pygame.display.set_mode( ( winx , winy ) , 0 , 32 )

class Matrix( object ) :

    def __init__( self ) :

        self.m = [ [ 1. , 0. , 0. , 0. ] ,
                   [ 0. , 1. , 0. , 0. ] ,
                   [ 0. , 0. , 1. , 0. ] ,
                   [ 0. , 0. , 0. , 1. ] ]

    def __mul__( self , r ) :

        uit = Matrix()
        for i in xrange( 3 ) :
            for j in xrange( 3 ) :
                uit.m[ i ][ j ] = 0
                for k in xrange( 3 ) :
                    uit.m[ i ][ j ] += self.m[ i ][ k ] * r.m[ k ][ j ]

        return uit

lv = []
for i in xrange( 64 ) :
    lv.append( Matrix() )
    
lsk = []
for i in xrange( 64 ) :
    lsk.append( Vector3() )

number = 0

def rad( x ) :
    return x * math.pi / 180.

XYZ , XZY , YXZ , YZX , ZXY , ZYX = 1 , 2 , 3 , 4 , 5 , 6

def link( no , x , y , z , xz , yz , xy , ax , p ) :

    if no < 1 or no > len( lv ) - 1 : return
    if p < 0 or p > len( lv ) - 1 : return
    if no == p : return

    rotx = Matrix()
    roty = Matrix()
    rotz = Matrix()
    trans = Matrix()

    m = lv[ p ]
    
    rotx.m[ 0 ][ 0 ] = math.cos( rad( yz ) )
    rotx.m[ 0 ][ 1 ] = -math.sin( rad( yz ) )
    rotx.m[ 1 ][ 0 ] = math.sin( rad( yz ) )
    rotx.m[ 1 ][ 1 ] = math.cos( rad( yz ) )
    
    roty.m[ 0 ][ 0 ] = math.cos( rad( xz ) )
    roty.m[ 0 ][ 2 ] = -math.sin( rad( xz ) )
    roty.m[ 2 ][ 0 ] = math.sin( rad( xz ) )
    roty.m[ 2 ][ 2 ] = math.cos( rad( xz ) )

    rotz.m[ 1 ][ 1 ] = math.cos( rad( xy ) )
    rotz.m[ 1 ][ 2 ] = -math.sin( rad( xy ) )
    rotz.m[ 2 ][ 1 ] = math.sin( rad( xy ) )
    rotz.m[ 2 ][ 2 ] = math.cos( rad( xy ) )

    trans.m[ 3 ][ 0 ] = x
    trans.m[ 3 ][ 1 ] = y
    trans.m[ 3 ][ 2 ] = z

    if ax == XYZ :
        lv[ no ] = m * rotx * roty * rotz * trans
    elif ax == XZY :
        lv[ no ] = m * rotx * rotz * roty * trans
    elif ax == YXZ :
        lv[ no ] = m * roty * rotx * rotz * trans
    elif ax == YZX :
        lv[ no ] = m * roty * rotz * rotx * trans
    elif ax == ZXY :
        lv[ no ] = m * rotz * rotz * roty * trans
    elif ax == ZYX :
        lv[ no ] = m * rotz * roty * rotx * trans
    else :
        lv[ no ] = m
    number = no    

def child( no , x , y , z , lim , ax , p ) :

    if lim < 0 or lim > len( lsk ) - 1 : return 

    link( no , x , y , z ,
          lsk[ lim ].y ,
          lsk[ lim ].x ,
          lsk[ lim ].z , ax , p )

def skelet( lim , x , y , z ) :

    if lim < 0 or lim > len( lsk ) - 1 : return

    lsk[ lim ].x = x
    lsk[ lim ].y = y
    lsk[ lim ].z = z

def spot( x , y , z ) :

    m = lv[ number ]
    hx = x * m.m[ 0 ][ 0 ]
    + y * m.m[ 1 ][ 0 ]
    + z * m.m[ 2 ][ 0 ]
    + m.m[ 3 ][ 0 ]
    hy = x * m.m[ 0 ][ 1 ]
    + y * m.m[ 1 ][ 1 ]
    + z * m.m[ 2 ][ 1 ]
    + m.m[ 3 ][ 1 ]
    hz = x * m.m[ 0 ][ 2 ]
    + y * m.m[ 1 ][ 2 ]
    + z * m.m[ 2 ][ 2 ]
    + m.m[ 3 ][ 2 ]

    return ( hx , hy , hz )

cColor.py
import math

# primary colors
black   = (   0 ,   0 ,   0 )
red     = ( 255 ,   0 ,   0 )
green   = (   0 , 255 ,   0 )
yellow  = ( 255 , 255 ,   0 )
blue    = (   0 ,   0 , 255 )
magenta = ( 255 ,   0 , 255 )
cyan    = (   0 , 255 , 255 )
white   = ( 255 , 255 , 255 )
# mixed colors
orange  = ( 255 , 127 ,   0 )
pink    = ( 255 , 127 , 127 )
gray    = ( 127 , 127 , 127 )
purple  = ( 127 ,   0 , 127 )

def mix( kla , f , klb ) :
    r1 , g1 , b1 = kla
    r2 , g2 , b2 = klb
    r = r1 + ( r2 - r1 ) * f
    g = g1 + ( g2 - g1 ) * f
    b = b1 + ( b2 - b1 ) * f
    return int( r ) , int( g ) , int( b )

def rainbow( deg ) :
    r = math.sin( deg * math.pi / 180 ) * 127 + 128
    g = math.sin( ( deg - 120 ) * math.pi / 180 ) * 127 + 128
    b = math.sin( ( deg + 120 ) * math.pi / 180 ) * 127 + 128
    return int( r ) , int( g ) , int( b )

cVector3.py
import math

class Vector3 :

    def __init__( self , x = 0.0 , y = 0.0 , z = 0.0 ) :
        self.x = x
        self.y = y
        self.z = z

    @classmethod
    def from_points( self ,  p1 , p2 ) :
        return Vector3( p2[ 0 ] - p1[ 0 ] ,
                        p2[ 1 ] - p1[ 1 ] ,
                        p2[ 2 ] - p1[ 2 ] )

    def lenght( self ) :
       return math.sqrt( self.x**2 + self.y**2 + self.z**2 )

    def normalize( self ) :
       self.x /= self.lenght() + 1e-7
       self.y /= self.lenght() + 1e-7
       self.z /= self.lenght() + 1e-7

    def __add__( self , r ) :
        return Vector3( self.x + r.x ,
                        self.y + r.y ,
                        self.z + r.z )

    def __sub__( self , r ) :
        return Vector3( self.x - r.x ,
                        self.y - r.y ,
                        self.z - r.z )

    def __neg__( self ) :
        return Vector3( -self.x , -self.y , -self.z )

    def __mul__( self , f ) :
        return Vector3( self.x * f , self.y * f , self.z * f )

    def __div__( self , f ) :
        return Vector3( self.x / f , self.y / f , self.x / f )

    def angle( self , v ) :
        return math.acos( ( self.lenght() * v.lenght() ) /
                          dot( self , v ) )

def cross( a , b ) :
    return Vector3( a.y * b.z - a.z * b.y ,
                    a.z * b.x - a.x * b.z ,
                    a.x * b.y - a.y * b.x )

def dot( a , b ) :
    return a.x * b.x + a.y * b.y + a.z * b.z + 1e-7

main
from basic3d import *

class Triangle( object ) :

    def __init__( self , p1 , p2 , p3 , clr ) :

        p1.x , p1.y , p1.z = spot( p1.x , p1.y , p1.z )
        p2.x , p2.y , p2.z = spot( p2.x , p2.y , p2.z )
        p3.x , p3.y , p3.z = spot( p3.x , p3.y , p3.z )
        
        self.p1 = p1
        self.p2 = p2
        self.p3 = p3

        self.led = ( self.p1 + self.p2 + self.p3 ) / 3

        self.normal = self.led + cross( self.p2 - self.p1 ,
                                        self.p3 - self.p1 )

        self.clr = clr

    def draw( self  , light ) :

        points = []
        points.append(
            ( winx / 2 + self.p1.x / ( self.p1.z + 1000 ) * 1000 ,
              winy / 2 - self.p1.y / ( self.p1.z + 1000 ) * 1000 ) )
        points.append(
            ( winx / 2 + self.p2.x / ( self.p2.z + 1000 ) * 1000 ,
              winy / 2 - self.p2.y / ( self.p2.z + 1000 ) * 1000 ) )
        points.append(
            ( winx / 2 + self.p3.x / ( self.p3.z + 1000 ) * 1000 ,
              winy / 2 - self.p3.y / ( self.p3.z + 1000 ) * 1000 ) )
#        normal = self.normal - self.led
#        normal.normalize()
#        light.normalize()
#        angle = normal.angle( light )
#        self.clr = mix( self.clr , math.cos( angle ) / 2 + .5 , black )
        
        pygame.draw.polygon( screen , self.clr , points )

class World( object ) :

    def __init__( self ) :

        self.tri = []
        self.pnt = []
        for i in xrange( 256 ) :
            self.pnt.append( Vector3() )
            
    def point( self , no , x , y , z ) :

        if no < 0 or no > len( self.pnt ) - 1 : return

        self.pnt[ no ].x = x
        self.pnt[ no ].y = y
        self.pnt[ no ].z = z

    def tri( self , p1 , p2 , p3 , clr ) :

        self.tri.append( Triangle( self.pnt[ p1 ] ,
                                   self.pnt[ p2 ] ,
                                   self.pnt[ p3 ] ,
                                   clr ) )
                         
    def quad( self , p1 , p2 , p3 , p4 , clr ) :

        self.tri.append( Triangle( self.pnt[ p1 ] ,
                                   self.pnt[ p2 ] ,
                                   self.pnt[ p3 ] ,
                                   clr ) )
        self.tri.append( Triangle( self.pnt[ p4 ] ,
                                   self.pnt[ p2 ] ,
                                   self.pnt[ p3 ] ,
                                   clr ) )
                         
    def draw( self , light ) :

        # sort trianlges
        for h in range( 1 , len( self.tri ) - 1 ) :
            for l in range( 0 , h - 1) :
                if self.tri[ h ].led.z < self.tri[ l ].led.z :
                    htri = self.tri[ h ]
                    self.tri[ h ] = self.tri[ l ]
                    self.tri[ l ] = htri

        for i in xrange( len( self.tri ) - 1 ) :
            self.tri[ i ].draw( light )

    def color_cube( self , m , d ) :

        self.point( 0 , m.x + d.x , m.y + d.y , m.z + d.z )
        self.point( 1 , m.x + d.x , m.y + d.y , m.z - d.z )
        self.point( 2 , m.x + d.x , m.y - d.y , m.z + d.z )
        self.point( 3 , m.x + d.x , m.y - d.y , m.z - d.z )
        self.point( 4 , m.x - d.x , m.y + d.y , m.z + d.z )
        self.point( 5 , m.x - d.x , m.y + d.y , m.z - d.z )
        self.point( 6 , m.x - d.x , m.y - d.y , m.z + d.z )
        self.point( 7 , m.x - d.x , m.y - d.y , m.z - d.z )
        
        self.quad( 0 , 1 , 3 , 2 , red )
        self.quad( 7 , 6 , 4 , 5 , cyan )
        self.quad( 0 , 1 , 5 , 4 , green )
        self.quad( 7 , 6 , 3 , 2 , magenta )
        self.quad( 0 , 2 , 6 , 4 , blue )
        self.quad( 7 , 5 , 1 , 3 , yellow )

    def clear( self ) :
        self.tri[ : ] = []
                         
world = World()

angle = 0.
angle_speed = 180. / 25.

clock = pygame.time.Clock()

pygame.display.set_caption( "VR 3D 1.0" )
while True :

    for event in pygame.event.get() :
        if event.type == QUIT :
            sys.exit()
        elif event.type == KEYDOWN :
            if event.key == K_ESCAPE :
                sys.exit()

    screen.fill( black )
    world.clear()

    link( 1 , 0 , 0 , 0 , angle , angle , 0 , XYZ , 0 )
    world.color_cube( Vector3( 0 , 0 , 0 ) , Vector3( 100 , 100 , 100 ) )



    world.draw( Vector3( 0 , 200 , 0 ) )

    clock.tick( 25 )
    angle += angle_speed 

    pygame.display.update()


Viewing all articles
Browse latest Browse all 2703

Trending Articles